
Board Game Programming
Teach Yourself

in 14 Minutes!

Implementing Othello in ML
(using Alpha-Beta Pruning)

OR

Solution 2 - Define new data types to present each element of
a board:

datatype occupyingType = Black
 | White
 | Empty;

datatype square = Square of int*int*occupyingType;

datatype board = Board of square list;

Cannot do much of pat-
tern matching with this

structure.

It is kind of thinking in
C++! :)

Solution 1 - Use a list of strings of the length 64, with items “B”
for black , “W” for white, and “E” for empty .

Example
[“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”,
“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”, “E”,“E”, “E”, “B”, “W”, “E”,...]

Step 1- We Need to Somehow Represent a Board in ML

A square is made of
an X and Y coordi-

nates and what sits in
it

A board, then, is
simply a list of

squares

What occupies each
square can be Black,

White or Empty

Now we can do
All sorts of

Pattern Matching!

Example:
fun oppositeType Black = White
 | oppositeType White = Black
 | oppositeType Empty = Empty;

Brute Force Solution:
1. Get a board and a player
2. Go through all 64 squares in the board, and see when the player puts a piece in that square it will be a

valid move
3. If it is valid, capture the enemy pieces in between, and add the board to the list of possi-

ble moves

Example:
Bellow is a few steps of the algorithm, when we are looking for all possible
moves for the White player:

Step 2– Now, We Need to Find All Valid Moves in a Board

-Is this a valid
move?
- YES!

-Is this a valid
move?
- No!

-Is this a valid
move?
- No!

-Is this a valid
move?
- No!

This may not be the most
efficient approach to solve

this problem, but hey, it
works! :)

Add the captured board to the Valid Moves list

On this board, white has
4 possible moves

We assign each of the pos-
sible moves as one of its

children

Now in the case of the
leftmost child, black also

has 4 possible moves

Using this search tree, we
can represent every possi-

ble move in a game

Step 3– We need to represent all possible moves Solution– Create a search tree of all possible
moves from the current board

Example: see the tree bellow

• If we want to find a good move, we need to compare the boards
that are the result of different moves

• ML cannot distinguish a board that has a good chance to win
from a board that is about to lose

• But ML understands numbers!

We need a heuristic function from Boards to Numbers

Step 4– What Is a Good Move?

Corners cannot be re-
captured — They are

worth 4 regular
squares

A Simple Heuristic Board Evaluator:
• Count all player pieces on the board
• Count all enemy pieces on the board
• Take into account that corner and edge

squares are more worthy than other
squares

• The value of the board is simply:
of Player Pieces - # of Enemy Pieces

• The higher this number, the more

likely it is that the player will win the
game in this board.

Edges are hard to re-
capture — They are

worth 2 regular
squares

Value of this board = 4 - 1 = 3

Step 5- So How Do We Find this Good Move?

• Remember that we already have a search tree that represents all possible moves from current
board till the end of the game.

• We also have a function that can evaluate a board and tell us how “good” the board is.

• We only need one assumption, and then we are good to go:

ASSUMPTION: Each player on its turn will choose the Best possible move

3 10 5 7

3 5

5
Black Moves Here
(We assume it will
choose the best possible
move for Black)

White Moves Here
(We assume it will
choose the best possible
move for White, which
will be the worst possi-
ble move for Black)

Here Is the Idea:
Traverse the tree, depth first, until you reach
the leaves . Evaluate each leaf board (these
are the boards that present a finished game).

Now on each level, if it is your turn to play,
you want to get the value of the best child. If
it is your enemies turn, she wants to do you
the most harm, so she will choose the child
with smallest value.

Recursively repeat this process, until all
nodes of depth 1 have a value. Now, the
best possible move is simply the node with
highest value.

This Is Called: MIN/MAX

Solution: Instead of traversing the whole tree –which is close to impossible, we choose
a depth (for example 5), and only search the tree within that depth.

Step 6– Making the Ultimate Othello Game -that Always Wins-

We have a search tree
that contains all possi-
ble moves in a game

Branching Factor is the problem.
With an average branching factor of 10, to traverse all game nodes
until the leaves, we have to evaluate this many boards:
1064
(=100,000,000,000,000,000,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000)

This is not easy!

We have a process
that can find the best
move in a list of valid

moves

We are able to make
an Othello game that

always wins!

NOT TRUE!

• As we saw earlier, we have to limit our game tree to a certain depth.

• But when the depth is too small, Min-Max plays stupidly

• Somehow, we need to go deeper in the tree, and yet don’t traverse as many nodes as

the branching factor forces us to.

Step 7– Increasing the Depth of our Search

A Lesson from the Gardener:
“Some branches of a fruit tree will never give any fruit. If

you cut these branches early in the year, the rest of the
branches will become stronger and give more fruit.”

If we could somehow determine the branches that have
no chance of being chosen as the best move and are only

adding to the branching factor, we could prune them
by simply ignoring them and their children.

9

6

7

3 7

8 7 6 3

Step 8- Pruning the Fruitless Branches

• We need a way to predict that a branch is no good, so we can prune it without traversing it
• One method to do this is called Alpha-Beta pruning.
• For each node we define two new values:

• Alpha = Floor = A value that, after this point, the player will at least gain
• Beta = Ceiling = A value that, after this point, the opponent will at most give

This Is Called: Alpha-Beta Pruning

At beginning:
Alpha = the least black will gain = -Infinity
Beta = the most white will give = +Infinity

At min levels, for each evaluated node:
If (returnVal < beta) then beta = returnVal
If (Alpha > Beta) then don’t evaluate any
more children

At max levels, for each evaluated node:
If (returnVal > alpha) then alpha = returnVal
If (Alpha > Beta) then don’t evaluate any more
children

All this makes no sense?! -- Try an example:
If we blindly follow the algorithm, at the indicated board, after the Min process evaluated the left child to 6, it
will have: Alpha = 7, Beta = 6. Alpha is greater than Beta so it won’t need to evaluate the rest of the children.
- WHY?!! Because at this point it knows that “after this point, the opponent will at most give” 6, and it also
knows that “after this point, the player will at least gain” 7, so no matter what the rest of the children evaluate
to, the player (Max process) will not choose what we return from this branch. Therefore, we can prune it

Step 9– Major Disappointment! Our Pruned Tree is Not Much Faster

For our pruning method to be effective,
we need to force ML to wait and create the
nodes of the game-tree as we need them.

Remember our game
tree was made of a

board on its root and the
list of all possible

moves (presented by
boards) as its children.

Remember that

ML is an Eager
Language

ML creates the whole
tree at the moment

that we define it, and
before we get to prune

anything

Step 10– A Good Othello Player Is a Lazy Othello Player!

To make our game-tree lazy, the main thing
that we have to do is to replace the list of

children with a sequence of children.

Example
Here is the structure of a general infinite tree:

Here is a simplified lazy game-tree generator:

datatype 'a itree = NULL
 | iTree of 'a * (unit -> 'a itree seq);

fun genGameTree (board) =
 [....]
 if (isEmpty possibleMovesSeq) then
 NULL
 else
 (iTree(board, (fn () => (iMap genGameTree possibleMovesSeq))));

So Why is this any Better?

After we made our game
structure lazy, the nodes of
the game tree will only be
created when they are
needed. This means that
when we ignore a branch at
a top level (for instance by
using alpha-beta) we save
all the computation time and
storage necessary to create
that board and its children,
and their children, all the
way to about 60 levels!

Step 11– Why Do the Good Guys Lose?

Observation:
If we let two instances of the game –with differ-
ent search depths- play against each other, it is
not always the case that the larger depth wins.

White Depth Black Depth Winner
0 1 Black
1 0 White
1 1 Black
0 2 White-Anomaly
2 0 White
1 2 Black
2 1 White
1 3 White-Anomaly
0 3 Black
3 1 Black-Anomaly
2 4 Black
4 2 Black-Anomaly
4 4 Black

The nature of Othello is such that the score
can be completely reversed in only few turns

Here is a simple example:

Notice how the scores changed from (3 - 3) to (6 - 1) in only
one move.

So why does the larger depth lose?

Because the larger depth algorithm is choosing a
move that looks very good up to the depth 4, for
instance. What it is missing is that if it had exam-
ined a few more turns, it would find out that this
move is actually a terrible move and hands half
the board to the opponent.

