
Board Game Programming  
Teach Yourself  

in 14 Minutes! 

Implementing Othello in ML  
(using Alpha-Beta Pruning) 

 
OR 



Solution 2 - Define new data types to present each element of 
a board: 
  
 
 

datatype occupyingType = Black 
                                        | White 
                                        | Empty;   

datatype square = Square of int*int*occupyingType; 

datatype board = Board of square list; 

Cannot do much of pat-
tern matching with this 

structure. 
 

It is kind of thinking in 
C++! :) 

Solution 1 - Use a list of strings of the length 64, with items “B” 
for black , “W” for white, and “E” for empty .   
 
Example 
[“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”, 
“E”, “E”,“E”, “E”,“E”, “E”,“E”, “E”, “E”,“E”, “E”, “B”, “W”, “E”,...] 

Step 1- We Need  to Somehow Represent a Board in ML 

A square is made of 
an X and Y coordi-

nates and what sits in 
it 

A board, then, is 
simply a list of 

squares 

What occupies each 
square can be Black, 

White or Empty 

Now we can do  
All sorts of 

Pattern Matching!  
 

Example: 
fun oppositeType Black = White 
 |   oppositeType White = Black 
 |   oppositeType Empty = Empty; 



Brute Force Solution: 
1. Get a board and a player 
2. Go through all 64 squares in the board, and see when the player puts a piece in that square it will be a 

valid move  
3. If it is valid, capture the enemy pieces in between, and add the board to the list of possi-

ble moves 
 
Example:  
Bellow is a few steps of the algorithm, when we are looking for all possible 
moves for the White player: 

Step 2– Now, We Need to Find All Valid Moves in a Board 

-Is this a valid 
move? 
- YES! 

-Is this a valid 
move? 
- No! 

-Is this a valid 
move? 
- No! 

-Is this a valid 
move? 
- No! 

This may not be the most 
efficient  approach to solve 

this problem, but hey, it 
works! :) 

Add the captured board to the Valid Moves list 



On this board, white has 
4 possible moves 

We assign each of the pos-
sible moves as one of its 

children 

Now in the case of the 
leftmost child, black also 

has 4 possible moves 

Using this search tree, we 
can represent every possi-

ble move in a game  

Step 3– We need to represent all possible moves   Solution– Create a search tree of all possible 
moves from the current board  
 
Example: see the tree bellow 



• If we want to find a good move, we need to compare the boards 
that are the result of different moves  

• ML cannot distinguish a board that has a good chance to win 
from a board that is about to lose 

• But ML understands numbers! 
 

We need a heuristic function from Boards to Numbers 

Step 4– What Is a Good Move? 

Corners cannot be re-
captured — They are 

worth 4 regular 
squares 

A Simple Heuristic Board Evaluator: 
• Count all player pieces on the board 
• Count all enemy pieces on the board 
• Take into account that corner and edge 

squares are more worthy than other 
squares 

• The value of the board is simply: 
# of Player Pieces - # of Enemy Pieces 

 
• The higher this number, the more 

likely it is that the player will win the 
game in this board. 

Edges are hard to re-
capture — They are 

worth 2 regular 
squares 

Value of this board = 4 - 1 = 3 



Step 5-  So How Do We Find this Good Move? 

• Remember that we already have a search tree that represents all possible moves from current 
board till the end of the game.  

• We also have a function that can evaluate a board and tell us how “good” the board is. 
 
• We only need one assumption, and then we are good to go: 
 
ASSUMPTION: Each player on its turn will choose the Best possible move  

3 10 5 7 

3 5 

5 
Black Moves Here 
(We assume it  will 
choose the best possible 
move for Black) 

White Moves Here 
(We assume it  will 
choose the best possible 
move  for White, which 
will be the worst possi-
ble move for Black) 

Here Is the Idea: 
Traverse the tree, depth first, until you reach 
the leaves . Evaluate each leaf board (these 
are the boards that present a finished game).  
 
Now on each level, if it is your turn to play, 
you want to get the value of the best child.  If 
it is your enemies turn, she wants to do you 
the most harm, so  she will choose the child 
with smallest value.  
 
Recursively repeat this process, until all 
nodes of depth 1 have a value.   Now, the 
best possible move is simply the node with 
highest value. 

This  Is Called: MIN/MAX 



Solution: Instead of traversing the whole tree –which is close to impossible, we choose 
a depth (for example 5), and only search the tree within that depth. 
 

Step 6– Making the Ultimate Othello Game -that Always Wins- 

We have a search tree 
that contains all possi-
ble moves in a game 

Branching Factor is the problem.    
With an average branching factor of 10, to traverse all game nodes 
until the leaves, we have to evaluate this many boards: 
1064 
(=100,000,000,000,000,000,000,000,000,000,000,000,000,000,000
,000,000,000,000,000,000,000)  
 

This is not easy! 

We have a process 
that can find the best 
move in a list of valid 

moves 

We are able to make 
an Othello game that 

always wins! 

NOT  TRUE!  



• As we saw earlier, we have to limit our game tree to a certain depth. 
 
• But when the depth is too small, Min-Max plays stupidly 
 
• Somehow, we need to go deeper in the tree, and yet don’t traverse as many nodes as 

the branching factor forces us to. 

Step 7– Increasing the Depth of our Search 

A Lesson from the Gardener: 
“Some branches of a fruit tree will never give any fruit. If 

you cut these branches early in the year, the rest of the 
branches will become stronger and give more fruit.” 

If we could somehow determine the branches that have 
no chance of being chosen as the best move and are only 

adding to the branching factor, we could prune them 
by simply ignoring them and their children. 
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Step 8-  Pruning the Fruitless Branches 

• We need a way to predict that a branch is no good, so we can prune it without traversing it 
• One method to do this is called Alpha-Beta pruning. 
• For each node we define two new values: 

• Alpha = Floor = A value that, after this point, the player will at least gain 
• Beta = Ceiling = A value that, after this point, the opponent will at most give 

This  Is Called: Alpha-Beta   Pruning 

At beginning: 
Alpha = the least black will gain = -Infinity  
Beta = the most white will give = +Infinity 

At min levels, for each evaluated node: 
If (returnVal < beta) then beta = returnVal 
If (Alpha > Beta) then don’t evaluate any 
more children 

At max levels, for each evaluated node: 
If (returnVal > alpha) then alpha = returnVal 
If (Alpha > Beta) then don’t evaluate any more 
children 

All this makes no sense?!   -- Try an example: 
If we blindly follow the algorithm, at the indicated board, after the Min process evaluated  the left child to 6, it 
will have: Alpha = 7, Beta = 6. Alpha is greater than Beta so it won’t need to evaluate the rest of the children.   
- WHY?!! Because at this point it knows that “after this point, the opponent will at most give” 6, and it also 
knows that  “after this point, the player  will at least gain” 7, so no matter what the rest of the children evaluate 
to, the player (Max process)  will not choose what we return from this branch. Therefore, we can prune it 



Step 9– Major Disappointment! Our Pruned Tree is Not Much Faster   

For our pruning method to be effective, 
we need to force ML to wait and create the 
nodes of the game-tree as we need them.  

Remember our game 
tree was made of a 

board on its root and the 
list of all possible 

moves (presented by 
boards) as its children. 

Remember that  

ML is an Eager 
Language 

ML creates the whole 
tree at the moment 

that we define it, and 
before we get to prune 

anything  



Step 10– A Good Othello Player Is a Lazy Othello Player!  

To make our game-tree lazy, the main thing 
that we have to do is to replace the list of 

children with a  sequence of children.  

Example 
Here is the structure of a general infinite tree: 
 
 
 
 
 
Here is a simplified lazy game-tree generator: 

datatype 'a itree = NULL 
                          | iTree of 'a * (unit -> 'a itree seq); 

fun genGameTree (board) =    
    [....] 
    if (isEmpty possibleMovesSeq) then 
        NULL   
    else  
        (iTree(board, (fn () => (iMap genGameTree possibleMovesSeq)))); 
     

So Why is this any Better? 
 
After we made our game 
structure lazy, the nodes of 
the game tree will only be 
created when they are 
needed. This means that 
when we ignore a branch at 
a top level (for instance by 
using alpha-beta)  we save 
all the computation time and 
storage necessary to create 
that board and its children, 
and their children, all the 
way to about 60 levels!   



Step 11– Why Do the Good Guys Lose?  

Observation: 
If we let two instances of the game –with differ-
ent search depths- play against each other, it is 
not always the case that the larger depth wins.   

White Depth Black Depth Winner 
0 1 Black 
1 0 White 
1 1 Black 
0 2 White-Anomaly 
2 0 White 
1 2 Black 
2 1 White 
1 3 White-Anomaly 
0 3 Black 
3 1 Black-Anomaly 
2 4 Black 
4 2 Black-Anomaly 
4 4 Black 

The nature of Othello is such that the score 
can be completely reversed in only few turns  

 

Here is a simple example: 
 
 
 
 
 
 
Notice how the scores changed from (3 - 3) to (6 - 1) in only 
one move. 

So why does the larger depth lose? 
 
Because the larger depth algorithm is choosing a 
move that looks very good up to the depth 4, for 
instance. What it is missing is that if it had exam-
ined a few more turns, it would find out that this 
move is actually a terrible move and  hands half 
the board to the opponent.  


